Talk:Chenopodium berlandieri

Wiki Education Foundation-supported course assignment

This article is or was the subject of a Wiki Education Foundation-supported course assignment. Further details are available on the course page. Student editor(s): Aperium.

Above undated message substituted from Template:Dashboard.wikiedu.org assignment by PrimeBOT (talk) 17:18, 16 January 2022 (UTC)[reply]

This article talk page was automatically added with {{WikiProject Food and drink}} banner as it falls under Category:Food or one of its subcategories. If you find this addition an error, Kindly undo the changes and update the inappropriate categories if needed. The bot was instructed to tagg these articles upon consenus from WikiProject Food and drink. You can find the related request for tagging here . Maximum and carefull attention was done to avoid any wrongly tagging any categories , but mistakes may happen... If you have concerns , please inform on the project talk page -- TinucherianBot (talk) 18:17, 3 July 2008 (UTC)[reply]

Distribution

I would like to see a map of their world distribution. — Anita5192 (talk) 18:12, 13 November 2011 (UTC)[reply]

Evaluation for PBIO 5180: Writing in the Life Sciences

This is an evaluation of the Chenopodium berlandieri article for a class. My intent and the intent of the assignment is to improve the current article's content and quality. The first step is an assessment of the current state of the article. This is that assessment. --Aperium (talk) 03:12, 26 October 2017 (UTC)[reply]

Content

As a whole the article is focused and its organization understandable, but the sections include paragraphs that would work better in different sections. Specifically, the last paragraph in the taxonomy section discusses mostly seed morphology in a way that would be more appropriate in a general description of the plant or in the domestication section. Additionally, the second paragraph in the domestication section is about contemporary uses of the plant rather than about its domestication.

Several topics are missing. There no mention of the crop-weed complex forming with North American quinoa agriculture or the bigger issue of herbicide resistance. There is no mention contemporary culinary uses of wild plants in eastern North America. The information on speciation and domestication is a decade out of date.

Some of the evidence is poor or lacking citations. Too many statements lack citations entirely. To my knowledge the content is mostly correct, but sources need to be included and updated. The speculative statements in the third paragraph under "domestication" should be removed or re-written and sourced. Updated sources will clarify the current academic understanding of the issue.

Improving the content will require updating and improving the quality of the current sources and finding sources for currently uncited statements. Speculative content will need to be rewritten and sourced appropriately. New sections will need to be created and existing content rearranged to improve organization. New content will need to be added to fill in topics currently unaddressed in the article.

Quality

The introduction is effective and concisely summarizes diverse information about the species. It includes information that is not discussed in the rest of the article; however, that is reflective of the poor quality of the article as a whole rather than the introduction specifically.

The only two headings cover taxonomy and domestication, leaving vast topics unexplored. Missing topics include a description of the plant and its ecology, its use as a food, its role as a major agricultural weed, and its archaeological history. A new section on uses of Chenopodium berlandieri as a food could include subheadings covering prehistoric cultivation in eastern North America, contemporary cultivation and culinary uses in Mesoamerica, and contemporary culinary uses of wild plants in eastern North America. A weed section would include difficulty in managing the seed bed in agricultural fields, herbicide resistance, and the crop-weed complex with quinoa.

The current images of a plant in flower and of a leaf are helpful, but the article would benefit from images of seeds, archaeological specimens, domesticated forms, and culinary dishes.

The appendices should be expanded. The "see also" and "external links" sections have one and two links respectively.

Many of the sentences are constructed poorly and will need to be adjusted. Yet the tone overall is neutral. The factuality of the claims would be stronger if better sources and recent sources were used. Sources 1, 2, 4, and 7 could be replaced with more appropriate publications. The first reference is especially bad. It is an Excel file with no references or supporting information. Source 7 is a duplicate of source 2, an online plant database with very little source or publication information. The remainder are peer-reviewed journal articles.

Complementing and expanding the article on Chenopodium berlandieri

Dear Talk community,

A few people and I have been working on complementing and expanding the Wikipedia article on pitseed goosefoot. This is our result. We would love to receive feedback from you before making any real changes to the Wikipedia article. All underlined sentences are already part of the article on goosefoot. The sentences and paragraphs that are not underlined would be added to the article. Let us know what you think!

Extended content

Morphology

Flowers

Very small flowers are tightly packed in small round clusters (glomerules) in spike-like and branching arrangements at the top of the stem, at the tips of branching stems and arising from upper leaf axils. The glomerules usually crowd on the branch. Within a glomerule, flowers may be at different stages of development: some just budding and others with maturing fruit. [1] Flowers lack petals, have 5 stamens and a round, green ovary with a 2-parted style at the tip that is not divided all the way to the base. Cupping the flower is a green calyx with 5 lobes 0.5 to 1.5 mm long and variable shape: triangular or egg-shaped, strongly keeled, blunt to rounded at the tip and thin and papery around the edges. Bracts are leaf-like or sometimes absent. The calyx, stalks and branches are moderately to densely white-mealy.[1]

Leaves and Stems

Leaves are alternate, ½ to 6 inches long and up to 3½ inches wide. The leaves are variable in shape: diamond to triangular to egg-shaped to lance-elliptic in outline. The tips may be pointed or blunt, while wedge-shaped or straight across at the base tapering to a stalk up to 3½ inches long. Lower leaves are largest, irregularly toothed, 1½ to 2+ times as long as wide and usually with a pair of shallow lobes near the base. Leaves become smaller and less toothy as they ascend the stem with the uppermost leaves often much narrower, proportionately longer and toothless.[1]

Surfaces are green, hairless and moderately to densely white-mealy, especially when young. The upper surface usually becomes smooth, while the lower surface usually remains white-mealy. Stems are also highly variable: erect to ascending, unbranched to much branched and sparsely to densely white-mealy, especially on the upper stem. The stem color may vary from green to purple-striped to red.[1]

References

  1. ^ a b c d "Chenopodium berlandieri (Pitseed Goosefoot): Minnesota Wildflowers". www.minnesotawildflowers.info. Retrieved 2021-11-18.

Domestication

C. berlandieri is the progenitor of all domesticated Chenopodium varieties in North and South America. In prehistoric eastern North America it was a part of the Eastern Agricultural Complex, a set of cultivated and domesticated species which supported sedentary and migrant populations for thousands of years. Archaeological evidence shows the species was extensively foraged as a wild plant in eastern North America as early as 6,500 BC. By 1700 BC, the plant had clearly been domesticated as a pseudocereal crop. The name given to the domesticated variety is C. b. ssp. jonesianum. The oldest evidence for domestication comes from caches of thin-testa seeds from rock shelters in the Ozark Plateaus and Ohio River basin.

Chenopodium berlandieri was cultivated alongside three other starchy, seed-bearing plants, namely maygrass, little barley and knotweed, providing an important nutritional basis for indigenous groups at the time.[1] However, given the small quantities of this crop found at anthropological sights in North America, it is assumed that historic use would have been supplementary nutrition.[2] Around approximately 1600 BC, another annual starchy seed crop, maize, appeared in the Eastern Woodlands.[3] Maize would later on come to dominate much of North American agriculture.[4] However, for about 3000 years, maize formed only a minor component of garden or field plots. By approximately 1150 AD, maize became a major dietary constituent of prehistoric populations in the Eastern Woodlands.[3] This essentially led to a substantial decrease in Chenopodium berlandieri cultivation. Nonetheless, pitseed goosefoot remained important up until the point of European contact, after which it virtually disappeared.[5]

The only known potential historic record of C. b. ssp. jonesianum is a c.a. 1720 account by Antoine Simon Le Page du Pratz.According to Le Page, the Natchez people cultivated a grain-like crop called Choupichoul that was delicious, nutritious, highly productive, and required minimal human labor. Multiple lines of evidence suggest that the crop was a domesticated variety of C. berlandieri.

There is also evidence that indigenous people used pitseed goosefoot not only for subsistence, but also for medicinal and preservative reasons. Chenopodium berlandieri appears to prevent intestinal parasites and has the capacity of preserving meals. These qualities may explain why indigenous people kept cultivating Chenopodium berlandieri despite the relatively large effort of harvesting its minuscule seeds.[6] It is assumed that the raw leaves were used medicinally, rather than the seeds[2].

Although cultivation disappeared in eastern North America, C. b. subsp. nuttalliae continues to be cultivated as a domesticated crop in Mexico. Three varieties of the subspecies are grown as a pseudocereal, as a leaf vegetable, and for its broccoli-like flowering shoots, respectively.

The principal difference between wild and domesticated forms of Chenopodium is the thickness of the seed coat. In the domesticated varieties, due to selective pressures during domestication, the testas are less than 20 microns thick; the testas of wild chenopods are 40 to 60 microns thick. This morphological characteristic is shared by the modern cultivated chenopod C. b. subsp. nuttalliae and the archaeological specimens of C. b. ssp. jonesianum. Genetic studies have shown that eastern North American and Mexican cultivated forms have considerable genetic distance between them. Despite the initial assumption of a single domestication event, consensus in the field now supports at least two independent domestication events in North America. Similarly, C. berlandieri's South American branch likely experienced at least two independent domestication events, both of which are called C. quinoa.

This is the only section of the article that I wrote -- and I'm pleased you preserved most or all of my prose. :) A critique after a quick read of this section: the third paragraph above should be combined with or follow paragraph one. I would get rid of "it is assumed" on two occasions. Likewise "there is" should go. Too passive. Use active verbs. Also delete some adverbs. "relatively, "essentially" Presumably, it's "meats" not "meals." But all in all, that's good work. Congratulations! Smallchief (talk) 14:12, 25 November 2021 (UTC)[reply]

References

  1. ^ Smith, Bruce D. (1987). The economic potential of Chenopodium Berlandieri in prehistoric Eastern North America. J. Ethnobiol. 7(1):29-54. https://ethnobiology.org/sites/default/files/pdfs/JoE/7-1/Smith1987.pdf
  2. ^ a b People and plants in ancient eastern North America. Paul E. Minnis. Washington, D.C.: Smithsonian Institution Press. 2003. ISBN 1-58834-133-X. OCLC 50479269.{{cite book}}: CS1 maint: others (link)
  3. ^ a b Smith, Bruce D. (1985). "THE ROLE OF CHENOPODIUM AS A DOMESTICATE IN PRE-MAIZE GARDEN SYSTEMS OF THE EASTERN UNITED STATES". Southeastern Archaeology. 4 (1): 51–72. ISSN 0734-578X.
  4. ^ Smith, Bruce D. (1989-12-22). "Origins of Agriculture in Eastern North America". Science. 246 (4937): 1566–1571. doi:10.1126/science.246.4937.1566.
  5. ^ Halwas, Sara; Worley, Anne C. (2019-12). "Incorporating Chenopodium berlandieri into a Seasonal Subsistence Pattern: Implications of Biological Traits for Cultural Choices". Journal of Ethnobiology. 39 (4): 510–529. doi:10.2993/0278-0771-39.4.510. ISSN 0278-0771. {{cite journal}}: Check date values in: |date= (help)
  6. ^ Robinson, Daniel Shelton, " Chenopodium berlandieri and the Cultural Origins of Agriculture in the Eastern Woodlands. " Master's Thesis, University of Tennessee, 2012. https://trace.tennessee.edu/utk_gradthes/1198

Cultivation

Climate & Soil Requirements

Chenopodium berlandieri is an extremely versatile plant; it can handle a variety of elevations, commonly found growing at sea level and at 10,000 ft elevation such as in the San Juan mountains of Colorado. In the Andes of South America, there are varieties of lambsquarter that grow at over 12,000 ft.[1] It is very cold hardy and therefore one of the later weeds to be killed by frost. It dislikes shade. When exposed to full sun conditions, the plants tend to be robust with many lateral branches producing high quantities of seed. Plants growing in shaded conditions tend to be more gracile, taller, with fewer lateral branches and produce less seed[2].

Chenopodium berlandieri thrives in many types of soil with varying pH levels. When the soil is fertile, it will grow large and full in size and form very attractive stands of vegetation. The presence of a stand of healthy lambsquarter is one of the best indicators for vital soil. However, it can also handle the worst of soils and has been known to even survive in disturbed soils such as annual vegetable gardens, neglected fields and coal-pit heaps. Like its close relatives, it also makes a fantastic cover crop and natural fertilizer because of its dense nutrient content.[1]

Sowing

C. Berlandieri is a self-seeding annual plant. It grows easily from seed and does not require orderly cultivation.[3] The seeds themselves can stay dormant for many years and take root when the conditions are ideal. The species is hermaphroditic, having both male and female organs on the same plant, which are wind-pollinated. It is known to cross-pollinate with C. Album to create a hybrid. The plant is in flower from July to October, with green-hued flowers. From August to October, the seeds ripen.[1]

Harvesting

C. berlandieri is an elusive subject for harvest yield experiments; the floodplain weeds with their miniscule seeds are difficult to harvest relative to other species. High costs are associated with its harvesting due to the minute size and oiliness of seeds. Although occurring in vast numbers, seed size makes collecting enough for daily or long-term subsistence needs of an individual or group challenging. The relative cost of procurement and processing in quantities sufficient for a meal has been a limiting factor in their use throughout history and domestication has had little impact on reducing overall handling costs.[4]

Yield

The yield of pitseed goosefoot can vary substantially due to the differences in amount of sunlight received by the plants. Moreover, competition with surrounding plants can also influence how much yield is obtained. Studies have recorded yields between 276 to 2854 kg/ha and estimate that the harvest yield of goosefoot in prehistoric times must have been around 750-1500 kg/ha. A yield above 1000 kg/ha must have been necessary to justify its use compared to maize.[5] Additionally, the harvest rate of pitseed goosefoot is about 1 kg/hour.[6]

References

  1. ^ a b c Blair, Katrina (2014). The Wild Wisdom of Weeds: 13 Essential Plants for Human Survival. Chelsea Green Publishing. ISBN 978-1-60358-516-3.
  2. ^ Halwas, Sara Jane (2017). "Domesticating Chenopodium: Applying Genetic Techniques and Archaeological Data to Understanding Pre-contact Plant Use in Southern Manitoba (AD1000-1500)" (PDF). A Thesis Submitted to the Faculty of Graduate Studies of The University of Manitoba in Partial Fulfillment of the requirements of the Degree of Doctor of Philosophy. Retrieved 14 November 2021.
  3. ^ "Goosefoot | The Office of the State Archaeologist". archaeology.uiowa.edu. Retrieved 2021-11-18.
  4. ^ Cite error: The named reference :9 was invoked but never defined (see the help page).
  5. ^ Cite error: The named reference :6 was invoked but never defined (see the help page).
  6. ^ Gremillion, Kristen J. (2004). "Seed Processing and the Origins of Food Production in Eastern North America". American Antiquity. 69 (2): 215–233. doi:10.2307/4128417. ISSN 0002-7316.

Weed Status

Members of the Chenopodium species have been implicated among the greatest weed threats to agriculture in North America and globally. [1] This success can be attributed to their ability to survive across a range of environmental conditions due to their high reproductive capacity, variation in their dormancy and germination requirements, and abiotic stress tolerance.[2] [3]

In addition, the larger Amaranthaceae family is one of five weed families (along with Poaceae, Asteraceae, Brassicaceae, and Chenopodiaceae) that represent only 50% of the world’s principal weeds but account for approximately 70% of all cases of herbicide resistance.[1] Most research identifies European species C. album as a prime candidate for evolving resistance to multiple herbicides, in particular to triazines and glyphosates. The weed status and herbicide tolerance of C. berlandieri is less researched and less clear due to its many wild and semi-domesticated forms resulting from frequent hybridization and polyploidy.[4] [5]

The spread and sporadic domestication of C. berlandieri across eastern North America and Central America has resulted in a complex network of domesticated and wild sub-species known to co-exist and interact in shared ecosystems. Historical evidence has been identified to support this interaction, namely human paleofeces collected from Salts Cave in Kentucky and Big Bone Cave in Tennessee found to contain both seeds from weed and crop forms of the plant seemingly consumed within hours of each other, suggesting close spatial proximity and a potential for hybridization between populations.[6]

Morphological studies identified that seeds from weedy varieties of C. berlandieri tend to have a thicker testa (seed coat), a more rounded or biconvex margin configuration, more prominent testa patterning, a less developed beak, and a smaller overall size when compared to their domesticated counterparts. However, intermediate morphologies were also identified, indicating genetic interaction (crossing over) between these groups. [6]

This cross-compatibility and hybridization leads to the formation of crop-weed complexes, within C. berlandieri as well as with other members of the Chenopodium species.[7] For example, following the spread of C. quinoa across North America as a novel crop, one study found that up to 30% of wild C. berlandieri grown along the periphery of quinoa fields were crop/weed hybrids. Gene flow was observed to be asymmetric (from crop to weed), due to a preferential flow of pollen from high-density populations of domesticated C. quinoa to dispersed populations of wild C. berlandieri.[8] This directional crop-weed interaction has implications for the future of introgressive change in wild C. berlandieri varieties. While genetic introgression is often degenerative for both crops and wild plants[9][10][11], it may also promote greater biodiversity in conventional cropping systems and present research opportunities for new crop varieties.[12]

References

  1. ^ a b Heap, Ian (2014). "Herbicide Resistant Weeds". Integrated Pest Management: 281–314. doi:10.1007/978-94-007-7796-5_12.
  2. ^ Holm, L.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. (1977). The World's Worst Weeds. Distribution and biology. Honolulu, Hawaii USA: University Press of Hawaii. ISBN 9780824802950.
  3. ^ Bajwaa, A.A.; Zulfiqar, U.; Sadia, S.; Bhowmik, P.; Chauhan, B.S. (2019). "A global perspective on the biology, impact and management of Chenopodium album and Chenopodium murale: two troublesome agricultural and environmental weeds". Environ Sci Pollut Res Int.: 5357–5371. doi:10.1007/s11356-018-04104-y.
  4. ^ Wilson, Hugh D. (1980). "Artificial Hybridization Among Species of Chenopodium Sect. Chenopodium". Systematic Botany. 5 (3): 253–263. doi:10.2307/2418372.
  5. ^ Ohri, D. (2015). "The taxonomic riddle of Chenopodium album L. complex (Amaranthaceae)". Nucleus. 58: 131–134. doi:10.1007/s13237-015-0143-2.
  6. ^ a b Gremillion, Kristen J. (1993). "Crop and Weed in Prehistoric Eastern North America: The Chenopodium Example". American Antiquity. 58 (3): 496–509. doi:10.2307/282109.
  7. ^ Eslami, Seyed Vahid; Ward, Sarah (2021). Biology and Management of Problematic Crop Weed Species: Chenopodium album and Chenopodium murale. Academic Press. pp. 89–112. ISBN 9780128229170.
  8. ^ Wilson, H.; Manhart, J. (1993). "Crop/weed gene flow: Chenopodium quinoa Willd. and C. berlandieri Moq". Theoretical and Applied Genetics. 86 (5): 642–648. doi:10.1007/BF00838721.
  9. ^ Jenczewski, Eric; Ronfort, Joëlle; Chèvre, Anne-Marie (2003). "Crop-to-wild gene flow, introgression and possible fitness effects of transgenes". Environmental Biosafety Research. 2 (1): 9–24. doi:10.1051/ebr:2003001.
  10. ^ Darmency, H. (1994). "The impact of hybrids between genetically modified crop plants and their related species: introgression and weediness". Molecular Ecology. 3 (1): 37–40. doi:10.1111/j.1365-294X.1994.tb00040.x.
  11. ^ Mueller, Natalie G. (2017). "Growing the lost crops of eastern North America's original agricultural system". Nature Plants. 3 (7): 17092. doi:10.1038/nplants.2017.92.
  12. ^ Jarvis, Devra I.; Hodgkin, Toby (1999). "Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems". Molecular Ecology. 8 (1): S159–S173. doi:10.1046/j.1365-294X.1999.00799.x.

Processing and use

Chenopodium berlandieri has very little presence in the current world food system, especially compared to other plants within its genus, such as Chenopodium quinoa or Chenopodium ambrosioides. This may be due to a recent Western bias against weedy plants, as well as a manifestation of colonial history which led to a disconnect from the local environment and indigenous knowledge.[1]

Today, the plant is still used as an edible herb and vegetable, primarily in Mexico. Edible parts of the plant include leaves, young shoots and seeds. Like other leafy greens, the leaves and shoots are eaten raw or cooked[2], though raw leaves are bitter as they contain chemical compounds produced by the plant for defense mechanisms.

The plant can be processed through mechanical and chemical techniques[3]. Mechanical processing techniques include winnowing to remove non-nutritive components, including possibly toasting the seeds during the winnowing process, followed by milling to de-husk the plant and separate the seeds[3].

The seeds can then be ground down into smaller particles to make grits or bulgar, or ground further into flours to be combined with cereal flours to make breads or pancakes[2]. Australian aboriginals conducted wet grinding through several rounds of soaking to produce a slurry that was formed into a small cake[3].

The seeds contain saponins, though in small quantities, which are removed by soaking seeds in water overnight and rinsing thoroughly before further processing[2]. Another method involves chemical processing, whereby gradual, controlled heating of the seeds detoxifies them, allowing nutrients to be bioavailable for digestion[3]. People with gout, arthritis, rheumatism, kidney stones, or hyperacidity should use caution when consuming the plant, as it may aggregate their condition[2].

References

  1. ^ Cite error: The named reference :9 was invoked but never defined (see the help page).
  2. ^ a b c d "Chenopodium berlandieri Southern Huauzontle, Pitseed goosefoot, Nuttall's goosefoot, Bush's goosefoot, Zschack's goosefoot PFAF Plant Database". pfaf.org. Retrieved 2021-11-13.
  3. ^ a b c d Cite error: The named reference :2 was invoked but never defined (see the help page).

Nutritional value and special compounds

As with other amaranthacae species, Chenopodium berlandieri is rich in macronutrients of proteins, carbohydrates and fats, as well as micronutrients including vitamins and minerals[1]. Its high nutritional quality has given rise to researching its use for food security in rural populations[2].

The leaf nutritional content, expressed per 100 g of fresh weight: 0.2 kJ Fat, 3.45 kJ Protein, 3.17 kJ total dietary fiber (primarily insoluble fiber; 8.3% to 12.8% of the recommended daily intake), 111.8 kJ energy, 2.21 kJ available carbohydrates[2]. The leaves are sources of phytochemicals and nutritional compounds[2]. They have shown significant contents of protein, inorganic nutrients of Calcium (Ca), Iron (Fe) and Magnesium (Mg)[2]. It also has a high percentage of oleic, linoleic and linolenic acids, which are essential for human nutrition[3], and highest total flavonoids index (TFI) when compared to other amaranthacae species[2].

The plant is a good source of fiber and has high flavonoids concentration, such as quercetin and kaempferol, which have high antioxidant potential[2]. Leaves have been analyzed to contain higher chlorophyll content compared to other Amaranthacae species, which is nutritionally relevant, as it has been reported to reduce reactive oxygen species[2].

The seeds are gluten free[1]. Like other quinoa and amaranth species, proteins in the seeds are of particularly high nutritional value due to high concentration of essential amino acids[1]. Safety concerns have been raised around saponins, which are toxic, though mostly to fish[4]. In the plant, the saponin quantity is too small to harm humans[4]. Studies have shown that some saponins may form insoluble complexes with minerals, such as zinc and iron, thus negatively affecting absorption and bioavailability of nutrients in the gut[1]. Saponins are bitter, but break down during the cooking process, rendering them harmless and allowing nutrients to be bioavailable to humans[4]. Cooking also reduces the oxalic acid content, which may also raise concerns[4].

References

  1. ^ a b c d Tang, Yao; Tsao, Rong (2017). "Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review". Molecular Nutrition & Food Research. 61 (7): 1600767. doi:10.1002/mnfr.201600767. ISSN 1613-4133.
  2. ^ a b c d e f g Santiago-Saenz, Yair O.; Hernández-Fuentes, Alma D.; Monroy-Torres, Rebeca; Cariño-Cortés, Raquel; Jiménez-Alvarado, Rubén (2018-12-01). "Physicochemical, nutritional and antioxidant characterization of three vegetables (Amaranthus hybridus L., Chenopodium berlandieri L., Portulaca oleracea L.) as potential sources of phytochemicals and bioactive compounds". Journal of Food Measurement and Characterization. 12 (4): 2855–2864. doi:10.1007/s11694-018-9900-7. ISSN 2193-4134.
  3. ^ de la Cruz Torres, Eulogio; Palomino Hasbach, Guadalupe; García Andrade, Juan Manuel; Mapes Sánchez, Cristina; González Jiménez, Josefina; Falcón Bárcenas, Thelma; Vázquez Arriaga, Octavio (2013), Jain, Shri Mohan; Dutta Gupta, S. (eds.), "The Genus Chenopodium: A Potential Food Source", Biotechnology of Neglected and Underutilized Crops, Dordrecht: Springer Netherlands, pp. 3–31, doi:10.1007/978-94-007-5500-0_1, ISBN 978-94-007-5500-0, retrieved 2021-11-13
  4. ^ a b c d Cite error: The named reference :1 was invoked but never defined (see the help page).

Future Potential as Medicine

Chenopodium berlandieri is a prime candidate for additional research, especially its prospects for utility in the medicinal model. Long-term use of this plant makes little sense when judged in strict terms of subsistence. C. berlandieri shares some qualities with its medicinally useful relatives such as Chenopodium ambrosioides which is a widely known vermifuge and a potential food preservative. This makes its potential medicinal value a possibility. Its chemical constituents and possible medicinal properties have only been briefly examined in the anthropological and botanical literature. The useful substances in the leaves avoid the problems associated with the inefficiency of harvesting and processing the seeds.[1]. Tests for and analyses of bioactive chemical compounds would likely resolve questions about the use of Chenopodium berlandieri and the medicinal use may be evident in the concentration of these compounds.

Sarah-Lea Rose (talk) 10:57, 25 November 2021 (UTC)[reply]

References

  1. ^ Robinson, Daniel Shelton. "Chenopodium berlandieri and the Cultural Origins of Agriculture in the Eastern Woodlands". Masters Thesis, University of Tennessee, Knoxville. Retrieved 14 November 2021.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Talk:Chenopodium_berlandieri&oldid=1200823103"