Cordón del Azufre

Cordón del Azufre
NASA Landsat composite image
Highest point
Elevation5,481 m (17,982 ft)[1]
Coordinates25°20′S 68°31′W / 25.333°S 68.517°W / -25.333; -68.517[2]
Geography
LocationArgentina, Chile[1]
Parent rangeAndes
Geology
Age of rock0.3 ± 0.3 mya
Mountain typeComplex volcano[1]
Last eruptionUnknown[1]

Cordón del Azufre is an inactive complex volcano located in the Central Andes, at the border of Argentina and Chile. It consists of three stages of volcanic cones and associated lava flows, and its activity is a consequence of the subduction of the Nazca Plate underneath the South American Plate. North of it are the dormant volcano Lastarria and the actively uplifting Lazufre region.

Geoography and geology

The volcano, which is sometimes conflated with Lastarria,[3] lies at the border between Argentina and Chile[1] and contains a series of lava flows and volcanic craters and lava flows,[4] covering a surface area of 60 square kilometres (23 sq mi).[5] Four craters are aligned in a north–south direction on a 5-kilometre-long (3.1 mi) ridge,[5][6] which could reflect a north-south trending lineament.[7] Numerous monogenetic volcanoes and stratovolcanoes developed on it and buried most of its central crater under lava flows. A pile of lava flows covers an area of 25 square kilometres (9.7 sq mi) on the eastern side.[7] The eastern component is formed by lava flows and craters in Argentina, and the youngest part la Moyra volcano in the western component generated a lava flow that advanced 6 kilometres (3.7 mi) westwards[5][8] and another that ran 3 kilometres (1.9 mi) to the east.[1] To the north lie the Plio-Pleistocene Atalaya volcano, followed by the Quaternary Azufre Oriental and Lastarria volcanoes,[9] to the south the Plio-Pleistocene Chuta, the Quaternary Cerro Bayo Complex and the Los Colorados caldera.[10] The area is uninhabited[11] and remote,[8] the climate arid, windy and with high temperature variations.[12]

Cordón del Azufre is located 300 kilometres (190 mi) east of the Chile Trench, where the subduction takes place.[13] At this latitude, the volcanic arc intersects a probably deep-seated structural area named the Archibarca corridor.[4] Around Cordón del Azufre is a more local-scale raised region, as has been observed for some other CVZ volcanoes.[14] The landscape is largely devoid of through-going drainages, as the extreme dryness and the frequent blockages by lava flows prevent its development.[15]

Regional context and composition

Off the western coast of South America, the Nazca Plate subducts beneath the South American Plate. This subduction is responsible for volcanism in the Andean Volcanic Belt, including the Northern Volcanic Zone, the Central Volcanic Zone (CVZ), the Southern Volcanic Zone and the Austral Volcanic Zone.[16] The CVZ extends over Peru, Bolivia, Chile and Argentina.[17] Volcanic manifestations in the Central Andes include the numerous calderas and associated ignimbrites that form the Altiplano-Puna volcanic complex,[18] such as La Pacana and Galán. There are about forty Quaternary volcanoes around Cordón del Azufre,[19] which formed on top of Tertiary volcanic rocks.[4] The region has grown to a high elevation since the Eocene.[20] Basement rocks are Paleozoic volcanic and sedimentary rocks,[21] and the large Pedernales-Arizaro thrust fault runs close to Cordón del Azufre.[22]

Volcanic rocks include andesite and dacite[23] with a porphyritic appearance and hornblende[5] and plagioclase inclusions.[6] The rocks formed through interactions of ascending basaltic andesite with crustal material.[24] The volcano is noted for its sulfur deposits,[25] and the source of sulfur in Salar de Gorbea.[26]

Eruption history

Volcanic rocks at Cordón del Azufre are less than one million years old.[27] Activity has moved over time from the north-south craters to the eastern lava flows and vents and eventually to La Moyra.[6] Lava flows of the eastern component have been dated to be 600,000 years old.[7] No activity, including fumarolic activity, has been recorded at Cordón del Azufre,[28] but the appearance (dark and pristine) and radiometric age (0.3 ± 0.3 mya K-Ar on the most recent flow[29]) of the lava flows suggest a recent age[6][5] with Holocene activity.[30] Pyroclastic deposits are linked to the youngest cone may date to a historical eruption. Renewed activity would likely consist of lava flows and pyroclastic deposits and, in light of the total lack of important roads and habitation, potential future eruptions are no threat.[7] It is considered the 21st most dangerous volcano out of 38 in Argentina.[31]

Beginning in 1996-1998,[32] an elliptic[33] area of 2,000 square kilometres (770 sq mi) has been uplifting.[34] The centre of the uplifting area is between the volcanoes Lastarria and Cordón del Azufre, and has been named "Lazufre" after the acronym,[18] but Cerro Bayo Gorbea is sometimes included in it.[32] Lastarria, Cordón del Azufre and Cerro Bayo Gorbea form linear fissures that emanate from the centre of the Lazufre uplift,[35] which is surrounded by a ring of Quaternary volcanoes and may be a developing caldera.[36] The start of the uplift may be related to the occurrence of several tectonic earthquakes in the 1990s, such as the 1995 Antofagasta earthquake. They could have perturbed the magma chambers or opened up fractures.[37] Magma influx has been stable as of 2009.[38]

This deformation system is among the largest on Earth,[39] comparable with the size of calderas such as Long Valley and Yellowstone.[40] There are several Pleistocene volcanoes around the uplift region, which may be supplied from the sill.[2] Magnetotelluric data show a zone with high electrical conductivity that rises from the mantle into the crust, and may be the magma supply to Lazufre.[41] Research published in 2016 indicated that the uplift has been ongoing since at least 400,000 years, based on the deformation of lava flows and volcanoes erupted within this time period. Depending on the highly uncertain estimates for the volume of the magma chamber, a modest overpressure may be sufficient to cause the roof of the chamber to fail and an eruption to start.[42]

See also

References

  1. ^ a b c d e f GVP 2016, General Information.
  2. ^ a b Perkins et al. 2016, p. 1082.
  3. ^ Zusman & Hevilla 2013, p. 99.
  4. ^ a b c Ruch & Walter 2010, p. 134.
  5. ^ a b c d e Trumbull et al. 1999, p. 139.
  6. ^ a b c d Froger et al. 2007, p. 150.
  7. ^ a b c d Amigo, Bertin & Orozco 2012, p. 22.
  8. ^ a b Froger et al. 2007, p. 149.
  9. ^ Grosse, Guzmán & Petrinovic 2017, p. 492.
  10. ^ Naranjo et al. 2019, p. 49.
  11. ^ Pritchard & Simons 2004, p. 2.
  12. ^ Benison 2019, pp. 149–150.
  13. ^ Ruch & Walter 2010, p. 133.
  14. ^ Perkins et al. 2016, p. 1078.
  15. ^ Perkins et al. 2016, p. 1084.
  16. ^ Henderson & Pritchard 2013, p. 1358.
  17. ^ Grosse, Guzmán & Petrinovic 2017, p. 484.
  18. ^ a b Budach, Brasse & Díaz 2013, p. 144.
  19. ^ Ruch et al. 2008, p. 338.
  20. ^ Ruch et al. 2009, p. 1.
  21. ^ Naranjo et al. 2019, p. 50.
  22. ^ Naranjo et al. 2019, p. 57.
  23. ^ Grosse, Guzmán & Petrinovic 2017, p. 493.
  24. ^ Kraemer et al. 1996, p. 590.
  25. ^ Benison 2019, p. 149.
  26. ^ Pueyo et al. 2021, p. 9.
  27. ^ Trumbull et al. 1999, p. 137.
  28. ^ Pritchard & Simons 2004, p. 23.
  29. ^ Perkins et al. 2016, p. 1091.
  30. ^ Naranjo et al. 2019, p. 47.
  31. ^ Garcia & Badi 2021, p. 26.
  32. ^ a b Remy et al. 2014, p. 3591.
  33. ^ Ruch & Walter 2010, p. 139.
  34. ^ Spica et al. 2015, p. 28.
  35. ^ Ruch et al. 2008, p. 341.
  36. ^ Froger et al. 2007, p. 161.
  37. ^ Ruch et al. 2008, p. 343.
  38. ^ Anderssohn et al. 2009, p. 2074.
  39. ^ Budach, Brasse & Díaz 2013, p. 145.
  40. ^ Pearse & Lundgren 2013, p. 1059.
  41. ^ Budach, Brasse & Díaz 2013, p. 148-149.
  42. ^ Perkins et al. 2016, p. 1092.

Sources

  • Amigo, Álvaro R.; Bertin, Daniel U.; Orozco, Gabriel L. (2012). Peligros volcánicos de la Zona Norte de Chile (PDF) (Report). Carta geológica de Chile: Serie Geología Ambiental (in Spanish). Vol. 17. SERVICIO NACIONAL DE GEOLOGÍA Y MINERÍA. p. 22. ISSN 0717-7305. Archived from the original (PDF) on June 29, 2021. Retrieved 20 August 2021.
  • Anderssohn, Jan; Motagh, Mahdi; Walter, Thomas R.; Rosenau, Matthias; Kaufmann, Hermann; Oncken, Onno (October 2009). "Surface deformation time series and source modeling for a volcanic complex system based on satellite wide swath and image mode interferometry: The Lazufre system, central Andes". Remote Sensing of Environment. 113 (10): 2062–2075. Bibcode:2009RSEnv.113.2062A. doi:10.1016/j.rse.2009.05.004.
  • Benison, Kathleen C. (21 February 2019). "The Physical and Chemical Sedimentology of Two High-Altitude Acid Salars in Chile: Sedimentary Processes In An Extreme Environment". Journal of Sedimentary Research. 89 (2): 147–167. doi:10.2110/jsr.2019.9.
  • Budach, Ingmar; Brasse, Heinrich; Díaz, Daniel (March 2013). "Crustal-scale electrical conductivity anomaly beneath inflating Lazufre volcanic complex, Central Andes" (PDF). Journal of South American Earth Sciences. 42: 144–149. Bibcode:2013JSAES..42..144B. doi:10.1016/j.jsames.2012.11.002.
  • Froger, J.-L.; Remy, D.; Bonvalot, S.; Legrand, D. (March 2007). "Two scales of inflation at Lastarria-Cordon del Azufre volcanic complex, central Andes, revealed from ASAR-ENVISAT interferometric data". Earth and Planetary Science Letters. 255 (1–2): 148–163. Bibcode:2007E&PSL.255..148F. doi:10.1016/j.epsl.2006.12.012.
  • Garcia, Sebastian; Badi, Gabriela (1 November 2021). "Towards the development of the first permanent volcano observatory in Argentina". Volcanica. 4 (S1): 21–48. doi:10.30909/vol.04.S1.2148. ISSN 2610-3540.
  • Grosse, P.; Guzmán, S.; Petrinovic, I.A. (2017). "Volcanes compuestos cenozoicos del noroeste argentino". In Muruaga, C.M.; Grosse, P. (eds.). Ciencias de la Tierra y Recursos Naturales del NOA. Relatorio del XX Congreso Geológico Argentino. San Miguel de Tucumán. pp. 484–517. ISBN 978-987-42-6666-8 – via ResearchGate.{{cite book}}: CS1 maint: location missing publisher (link)
  • "Cordon del Azufre". Global Volcanism Program. Smithsonian Institution. 23 February 2016.
  • Henderson, S. T.; Pritchard, M. E. (May 2013). "Decadal volcanic deformation in the Central Andes Volcanic Zone revealed by InSAR time series". Geochemistry, Geophysics, Geosystems. 14 (5): 1358–1374. Bibcode:2013GGG....14.1358H. doi:10.1002/ggge.20074.
  • Kraemer, B.; Wittenbrink, R.; Hahne, K.; Gerstenberger, H. (September 1996). "Geochemical constraints on crustal structure from neogene volcanic rocks of the Salar de Antofalla volcanic field and adjacent Andean Cordillera (24°-26°S, 67°-69°W)". Géodynamique andine : résumé étendus = Andean geodynamics : extended abstracts. ISAG 96 : Symposium International sur la Géodynamique Andine, 3. Saint-Malo. pp. 589–592. ISBN 2-7099-1332-1. ISSN 0767-2896.{{cite conference}}: CS1 maint: date and year (link)
  • Naranjo, José A.; Hevia, Francisco; Villa, Víctor; Ramírez, Cristián A. (1 February 2019). "Miocene to Holocene geological evolution of the Lazufre segment in the Andean volcanic arc". Geosphere. 15 (1): 47–59. doi:10.1130/GES01352.1.
  • Pearse, Jill; Lundgren, Paul (28 March 2013). "Source model of deformation at Lazufre volcanic center, central Andes, constrained by InSAR time series". Geophysical Research Letters. 40 (6): 1059–1064. Bibcode:2013GeoRL..40.1059P. doi:10.1002/grl.50276.
  • Perkins, Jonathan P.; Finnegan, Noah J.; Henderson, Scott T.; Rittenour, Tammy M. (August 2016). "Topographic constraints on magma accumulation below the actively uplifting Uturuncu and Lazufre volcanic centers in the Central Andes". Geosphere. 12 (4): 1078–1096. Bibcode:2016Geosp..12.1078P. doi:10.1130/GES01278.1.
  • Pritchard, M. E.; Simons, M. (February 2004). "An InSAR-based survey of volcanic deformation in the central Andes" (PDF). Geochemistry, Geophysics, Geosystems. 5 (2): n/a. Bibcode:2004GGG.....5.2002P. doi:10.1029/2003GC000610. S2CID 18453316.
  • Pueyo, JuanJosé; Demergasso, Cecilia; Escudero, Lorena; Chong, Guillermo; Cortéz-Rivera, Paulina; Sanjurjo-Sánchez, Jorge; Carmona, Virginia; Giralt, Santiago (July 2021). "On the origin of saline compounds in acidic salt flats (Central Andean Altiplano)". Chemical Geology. 574: 120155. doi:10.1016/j.chemgeo.2021.120155. hdl:2445/184092.
  • Remy, D.; Froger, J. L.; Perfettini, H.; Bonvalot, S.; Gabalda, G.; Albino, F.; Cayol, V.; Legrand, D.; Saint Blanquat, M. De (September 2014). "Persistent uplift of the Lazufre volcanic complex (Central Andes): New insights from PCAIM inversion of InSAR time series and GPS data". Geochemistry, Geophysics, Geosystems. 15 (9): 3591–3611. Bibcode:2014GGG....15.3591R. doi:10.1002/2014GC005370.
  • Ruch, J.; Anderssohn, J.; Walter, T.R.; Motagh, M. (July 2008). "Caldera-scale inflation of the Lazufre volcanic area, South America: Evidence from InSAR" (PDF). Journal of Volcanology and Geothermal Research. 174 (4): 337–344. Bibcode:2008JVGR..174..337R. doi:10.1016/j.jvolgeores.2008.03.009.
  • Ruch, J.; Manconi, A.; Zeni, G.; Solaro, G.; Pepe, A.; Shirzaei, M.; Walter, T. R.; Lanari, R. (21 November 2009). "Stress transfer in the Lazufre volcanic area, central Andes". Geophysical Research Letters. 36 (22). Bibcode:2009GeoRL..3622303R. CiteSeerX 10.1.1.660.4054. doi:10.1029/2009GL041276. S2CID 128529021.
  • Ruch, J.; Walter, T.R. (September 2010). "Relationship between the InSAR-measured uplift, the structural framework, and the present-day stress field at Lazufre volcanic area, central Andes". Tectonophysics. 492 (1–4): 133–140. Bibcode:2010Tectp.492..133R. doi:10.1016/j.tecto.2010.06.003.
  • Spica, Zack; Legrand, Denis; Iglesias, Arturo; Walter, Thomas R.; Heimann, Sebastian; Dahm, Torsten; Froger, Jean-Luc; Rémy, Dominique; Bonvalot, Sylvain; West, Michael; Pardo, Mario (July 2015). "Hydrothermal and magmatic reservoirs at Lazufre volcanic area, revealed by a high-resolution seismic noise tomography". Earth and Planetary Science Letters. 421: 27–38. Bibcode:2015E&PSL.421...27S. doi:10.1016/j.epsl.2015.03.042.
  • Trumbull, R.B; Wittenbrink, R; Hahne, K; Emmermann, R; Büsch, W; Gerstenberger, H; Siebel, W (March 1999). "Evidence for Late Miocene to Recent contamination of arc andesites by crustal melts in the Chilean Andes (25–26°S) and its geodynamic implications". Journal of South American Earth Sciences. 12 (2): 135–155. Bibcode:1999JSAES..12..135T. doi:10.1016/S0895-9811(99)00011-5.
  • Zusman, Perla; Hevilla, María Cristina (11 September 2013). "Panamericanismo y arbitraje en conflictos de límites: la participación de Estados Unidos en la definición de la frontera argentino-chilena en la Puna de Atacama (1899)". Cuadernos de Geografía: Revista Colombiana de Geografía. 23 (2): 95–106. doi:10.15446/rcdg.v23n2.38230. hdl:11336/34374. ISSN 0121-215X.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Cordón_del_Azufre&oldid=1208929674"