Complex analytic variety

In mathematics, and in particular differential geometry and complex geometry, a complex analytic variety[note 1] or complex analytic space is a generalization of a complex manifold that allows the presence of singularities. Complex analytic varieties are locally ringed spaces that are locally isomorphic to local model spaces, where a local model space is an open subset of the vanishing locus of a finite set of holomorphic functions.

Definition

Denote the constant sheaf on a topological space with value by . A -space is a locally ringed space , whose structure sheaf is an algebra over .

Choose an open subset of some complex affine space , and fix finitely many holomorphic functions in . Let be the common vanishing locus of these holomorphic functions, that is, . Define a sheaf of rings on by letting be the restriction to of , where is the sheaf of holomorphic functions on . Then the locally ringed -space is a local model space.

A complex analytic variety is a locally ringed -space that is locally isomorphic to a local model space.

Morphisms of complex analytic varieties are defined to be morphisms of the underlying locally ringed spaces, they are also called holomorphic maps. A structure sheaf may have nilpotent element,[1] and also, when the complex analytic space whose structure sheaf is reduced, then the complex analytic space is reduced, that is, the complex analytic space may not be reduced.

An associated complex analytic space (variety) is such that;[1]

Let X be schemes finite type over , and cover X with open affine subset () (Spectrum of a ring). Then each is an algebra of finite type over , and . Where are polynomial in , which can be regarded as a holomorphic function on . Therefore, their common zero of the set is the complex analytic subspace . Here, scheme X obtained by glueing the data of the set , and then the same data can be used to glueing the complex analytic space into an complex analytic space , so we call a associated complex analytic space with X. The complex analytic space X is reduced if and only if the associated complex analytic space reduced.[2]

See also

Note

  1. ^ a b Hartshorne 1977, p. 439.
  2. ^ Grothendieck & Raynaud (2002) (SGA 1 §XII. Proposition 2.1.)

Annotation

  1. ^ Complex analytic variety (or just variety) is sometimes required to be irreducible and (or) reduced

References

  • Aroca, José Manuel; Hironaka, Heisuke; Vicente, José Luis (3 November 2018). Complex Analytic Desingularization. doi:10.1007/978-4-431-49822-3. ISBN 978-4-431-49822-3.
  • Bloom, Thomas; Herrera, Miguel (1969). "De Rham cohomology of an analytic space". Inventiones Mathematicae. 7 (4): 275–296. Bibcode:1969InMat...7..275B. doi:10.1007/BF01425536. S2CID 122113902.
  • Cartan, H.; Bruhat, F.; Cerf, Jean.; Dolbeault, P.; Frenkel, Jean.; Hervé, Michel; Malatian.; Serre, J-P. "Séminaire Henri Cartan, Tome 4 (1951-1952)". (no.10-13)
  • Fischer, G. (14 November 2006). Complex Analytic Geometry. Springer. ISBN 978-3-540-38121-1.
  • Gunning, Robert Clifford; Rossi, Hugo (2009). "Chapter III. Variety (Sec. B. Anlytic cover)". Analytic Functions of Several Complex Variables. American Mathematical Soc. ISBN 9780821821657.
  • Gunning, Robert Clifford; Rossi, Hugo (2009). "Chapter V. Anlytic space". Analytic Functions of Several Complex Variables. American Mathematical Soc. ISBN 9780821821657.
  • Grauert, Hans; Remmert, Reinhold (1958). "Komplexe Räume". Mathematische Annalen. 136 (3): 245–318. doi:10.1007/BF01362011. S2CID 121348794.
  • Grauert, H.; Remmert, R. (6 December 2012). Coherent Analytic Sheaves. Springer. ISBN 978-3-642-69582-7.
  • Grauert, H.; Peternell, Thomas; Remmert, R. (9 March 2013). Several Complex Variables VII: Sheaf-Theoretical Methods in Complex Analysis. Springer. ISBN 978-3-662-09873-8.
  • Grothendieck, Alexander; Raynaud, Michèle (2002). "Revêtements étales et groupe fondamental§XII. Géométrie algébrique et géométrie analytique". Revêtements étales et groupe fondamental (SGA 1) (in French). arXiv:math/0206203. doi:10.1007/BFb0058656. ISBN 978-2-85629-141-2.
  • Hartshorne, Robin (1970). Ample Subvarieties of Algebraic Varieties. Lecture Notes in Mathematics. Vol. 156. doi:10.1007/BFb0067839. ISBN 978-3-540-05184-8.
  • Hartshorne, Robin (1977). Algebraic Geometry. Graduate Texts in Mathematics. Vol. 52. Berlin, New York: Springer-Verlag. doi:10.1007/978-1-4757-3849-0. ISBN 978-0-387-90244-9. MR 0463157. S2CID 197660097. Zbl 0367.14001.
  • Huckleberry, Alan (2013). "Hans Grauert (1930–2011)". Jahresbericht der Deutschen Mathematiker-Vereinigung. 115: 21–45. arXiv:1303.6933. doi:10.1365/s13291-013-0061-7. S2CID 119685542.
  • Remmert, Reinhold (1998). "From Riemann Surfaces to Complex Spaces". Séminaires et Congrès. Zbl 1044.01520.
  • Serre, Jean-Pierre (1956). "Géométrie algébrique et géométrie analytique". Annales de l'Institut Fourier. 6: 1–42. doi:10.5802/aif.59. ISSN 0373-0956. MR 0082175.
  • Tognoli, A. (2 June 2011). Tognoli, A (ed.). Singularities of Analytic Spaces: Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Bressanone (Bolzano), Italy, June 16-25, 1974. doi:10.1007/978-3-642-10944-7. ISBN 978-3-642-10944-7.
  • "Chapter II. Preliminaries". Zariski-decomposition and Abundance. Mathematical Society of Japan Memoirs. Vol. 14. Mathematical Society of Japan. 2004. pp. 13–78. doi:10.2969/msjmemoirs/01401C020. ISBN 978-4-931469-31-0.
  • Flores, Arturo Giles; Teissier, Bernard (2018). "Local polar varieties in the geometric study of singularities". Annales de la Faculté des Sciences de Toulouse: Mathématiques. 27 (4): 679–775. arXiv:1607.07979. doi:10.5802/afst.1582. S2CID 119150240.

Future reading

  • Huckleberry, Alan (2013). "Hans Grauert (1930–2011)". Jahresbericht der Deutschen Mathematiker-Vereinigung. 115: 21–45. doi:10.1365/s13291-013-0061-7. S2CID 256084531.

External links

Retrieved from "https://en.wikipedia.org/w/index.php?title=Complex_analytic_variety&oldid=1212427100"